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The dislocation core structure of self-interstitial atom !SIA" clusters in bcc iron and fcc copper is determined
using the hybrid ab initio continuum method of Banerjee et al. #Philos. Mag. 87, 4131 !2007"$. To reduce
reliance on empirical potentials and to facilitate predictions of the effects of local chemistry and stress on the
structure of defects, we present here a hybrid extension of the Peierls-Nabarro continuum model, with lattice
resistance to slip determined separately from ab initio calculations. A method is developed to reconstruct
atomic arrangements and geometry of SIA clusters from the hybrid model. The results are shown to compare
well with molecular-dynamics simulations. In iron, the core structure does not show dependence on the size of
the self-interstitial cluster, and is nearly identical to that of a straight edge dislocation. However, the core
structure of SIA clusters in Cu is shown to depend strongly on the cluster size. Small SIA clusters are found to
have nondissociated compact dislocation cores, with a strong merging of Shockley partial dislocations and a
relatively narrow stacking fault !SF" region. The compact nature of the SIA core in copper is attributed to the
strong dependence of the self-energy on the cluster size. As the number of atoms in the SIA cluster increases,
Shockley partial dislocations separate and the SF region widens, rendering the SIA core structure to that of an
edge dislocation. The separation distance between the two partials widens as the cluster size increases, and
tends to the value of a straight edge dislocation for cluster sizes above 400 atoms. The local stress is found to
have a significant effect on the atomic arrangements within SIA clusters in copper and the width of the stacking
faults. An applied external shear can delocalize the core of an SIA cluster in copper, with positive shear defined
to be on the !111" plane along the #1̄1̄2$ direction. For an SIA cluster containing 1600 atoms, a positive 1 GPa
shear stress delocalizes the cluster and expands the SF to 30b, while a negative shear stress of 2 GPa contracts
the core to less than 5b, where b is the Burgers vector magnitude.
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I. INTRODUCTION

During energetic particle interaction with crystalline sol-
ids, self-interstitial atoms !SIA" readily aggregate in the near
vicinity of collision cascades initiated by energetic ions
or neutrons, and they cluster into tightly bound coherent
configurations known as self-interstitial atom clusters.1,2

Such clusters tend to move in tightly bound configura-
tions along crystallographic orientations with the highest
atomic density, and occasionally change their directions of
motion in response to temperature fluctuations or stress
inhomogeneities.3 The one-dimensional nature of SIA cluster
diffusion has been shown to result in a variety of important
consequences in irradiated materials, such as the alignment
of imperfect void and bubble lattices,4 the emergence of spa-
tially ordered dislocation structures,5,6 and the modification
of the order of reaction kinetics in rate theory models.7 SIA
clusters have also been investigated for their influence on the
strength and ductility of irradiated materials.8–11

To understand the contribution of SIA clusters to the va-
riety of phenomena associated with radiation interaction with
materials, it is essential to address the fundamental physics
of these defects. The geometry of atomic arrangements of
SIA clusters often controls their interactions with the micro-
structure, and hence should be accurately determined. SIA
clusters are defects that can be regarded as small dislocation
loops. However, since they are so small, application of dis-
location theory to describe their elastic interactions may be

questionable, because the elastic theory of defects ignores
the structure of the dislocation core. Another more realistic
approach to studies of SIA cluster interactions with other
defects is the molecular-dynamics !MD" simulation method.
MD simulations were performed in order to understand the
detailed mechanisms of the dynamical interactions between
SIA clusters and other defects. For example, Osetsky et al.3

performed MD simulations of the interaction between an
edge dislocation and an SIA cluster in bcc iron and fcc cop-
per. They studied the influence of SIA clusters on the dynam-
ics of dislocations, and discussed the possible effects of dis-
location decoration by SIA clusters on radiation hardening.
Bacon et al.12 performed MD simulations of the interaction
between an edge dislocation and a self-interstitial loop in bcc
iron, and described the atomistic mechanism of the formation
of a super jog on the dislocation line as a result of its inter-
action with the SIA cluster. However, MD simulation results
must be carefully interpreted for direct quantitative informa-
tion, because the reliability of the results strongly depends on
the accuracy of underlying empirical interatomic potentials.
A recent interesting example reveals that while MD simula-
tions utilizing the embedded atom method predict that dislo-
cations in Al dissociate into partials,13 no such dissociation
was ever observed experimentally.14 Also, the spreading of
the Lomer dislocation predicted by the Voter-Chen potential
for aluminum is not experimentally observed, and the
Ercolessi-Adams potential does not accurately model the
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dissociation of the 60° dislocation in aluminum.15 Presently,
MD simulations of dislocation properties and interactions are
also limited to mostly straight dislocations with simplified
boundary conditions. Alternatively, ab initio calculations are
considered to be more reliable for quantitative predictions of
defect properties.16,17 Nevertheless, direct applications of ab
initio methods to defect problems is very challenging, be-
cause of severe computational limitations on the number of
atoms within a simulation cell.

One of the most successful defect models is that due to
Peierls and Nabarro, in which the dislocation core structure
is atomistically resolved on the basis of the continuum theory
of elasticity.18 In the Peierls-Nabarro !PN" model, the core
structure is determined by balancing the crystal lattice restor-
ing forces with elastic interactions between infinitesimal in-
compatibilities !dislocations" within the dislocation core. The
model relies on the decomposition of the problem into two
components. Large atomic displacements associated with
“slip” are localized on the slip plane, and are treated as ma-
terial incompatibilities. The interaction between atoms in the
remainder of the crystal is obtained using the theory of elas-
ticity. The original PN model is restricted to the analysis of
the cores of infinitely long and straight dislocations, and uti-
lizes assumed lattice resistance forces arising from the dis-
placement of one part of the crystal relative to the other
across the slip plane. Recently, Banerjee et al.19 proposed an
atomistic-continuum hybrid computational method that ex-
tends the original PN model to dislocation problems of arbi-
trarily complex shape, and that directly utilizes ab initio in-
formation to reconstruct lattice restoring forces. The balance
equations in the extended PN model are solved using the
parametric dislocation dynamics !PDD" approach.20,21 The
lattice restoring stress in the PN model is determined with ab
initio density-functional theory !DFT" in the form of gener-
alized stacking fault !GSF" energy.22 The method has been
successfully applied to studies of the core structure of shear
dislocation loops,19 and to dislocation transmission across
the interface of elastic bimaterials.23

The present study has two objectives. The first objective
is to advance the development of the hybrid atomistic-
continuum method of Banerjee et al., extending it to the
determination of the core structure of SIA clusters. We inves-
tigate here the dependence of the core structure of SIA clus-
ters on their sizes, and on the local stress environment in Fe
!bcc" and Cu !fcc". The second objective is to elucidate the
influence of applied stress on the atomic structure of SIA
clusters and to reveal the conditions for drastic deviations
from unstressed configurations. In particular, we wish to find
out the magnitude and nature of the local stress that results in
compacting dissociated SIA cores in copper, and in addition,
in delocalizing the core completely.

While straight and infinitely long dislocations have no
self-forces associated with them, small dislocation loops pos-
ses strong self-forces that are expected to influence atomic
displacements within the core. Such self-force effects can be
important if their magnitude is comparable to the lattice re-
storing forces. The distribution of these forces on the slip
plane can result in a compact core, as in the case of Fe, or a

dissociated core, as in Cu. The interference of strong self-
forces with this force structure is thus expected to change the
core structure of small SIA dislocation loops. We will exam-
ine here this delicate balance, which is a function of the
cluster size and the local stress environment. In order to
make detailed atomistic investigations of the dislocation
core, we present a distinct method for reconstruction of
atomic arrangements directly from the hybrid ab initio con-
tinuum model. Using this method, the atomic arrangements
of SIA clusters will be calculated and compared to the results
of classical MD simulations. Finally, we will show that SIA
clusters in copper respond to an applied shear stress by ad-
justing their core sizes and atomic displacements within.

In the following, we first present detail of the present
computational method in Sec. II, including a discussion of
our method of deriving atomic positions from the model.
This is followed by the results for the core structure of SIA
clusters in Fe and Cu, presented in Sec. III. The influence of
an externally applied shear stress on the core structure of SIA
clusters in Cu is discussed in Sec. IV, while a summary and
conclusions are finally given in Sec. V.

II. COMPUTATIONAL METHOD

Banerjee et al.19 proposed a hybrid ab initio continuum
method to enable determination of the core structure of dis-
locations of arbitrarily complex geometry. The approach is
an extension of the original Peierls-Nabarro model,18 in
which a balance is sought between forces arising from infini-
tesimal displacements within the dislocation core and lattice
restoring forces. This balance can be expressed as

p!x" =
!

"!1 − #"#−$

$ 1
x! − x

du

dx!
dx!, !1"

where, p!x" is the lattice restoring force, ! and # are the
elastic shear modulus and Poisson’s ratio, respectively, x is
the position of an infinitesimal element of displacement
where the force balance in Eq. !1" is evaluated, while x! is
the position of any other infinitesimal element of displace-
ment, and u is the sought-after atomic displacement within
the dislocation core. To numerically solve Eq. !2", the dislo-
cation core is first discretized into a number !N" of infinitesi-
mal dislocations, and the Burgers vector of each infinitesimal
dislocation is set to b /N to keep the total displacement of the
dislocations. The equivalent discrete form of Eq. !2" then
takes the form

p!xi" =
!

"!1 − #"
b

2N$
j!i

N
1

xj − xi
. !2"

The elastic interaction term between displacements in the
dislocation core in Eq. !2" can be replaced with an elastic
interaction between infinitesimal dislocations. Thus, Eq. !2"
can be solved for a dislocation of complex three-dimensional
geometry using the methodology of parametric dislocation
dynamics.20,21 The original PN model is modified in two re-
spects: !1" the lattice restoring force term on the left-hand
side of Eq. !2" is calculated utilizing modern computational
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quantum mechanics,24 and !2" the applied and self-stress !for
curved dislocations" are added to the lattice restoring force.
The gradient of the orientation-dependent slip energy, known
as the generalized stacking fault energy, or the ! surface, is
used to determine p.

p = −
d!

du
,

where, ! is the energy required to rigidly displace two crystal
halves, cut along the slip plane, in a specified direction. We
compute this energy surface using density-functional theory,
implemented within the VASP ab initio computer program.25

Thus, the lattice restoring stress contains information on the
atomistic stacking fault structure and works as a bridge be-
tween atomistic and continuum formulations. The total stress
on infinitesimal dislocations in PDD simulations is then
given by

"total = "self + "PK + " fric + p ,

where "self is the self-stress, "PK is the elastic interaction
stress between infinitesimal dislocations, and " fric is the fric-
tion stress.

The results of hybrid simulations are the positions of in-
finitesimal dislocations and the distribution of displacements
within the dislocation core. Although such information is
very useful in understanding the core structure of a particular
dislocation, atomic configurations should provide a more
physical picture. To study the atomic arrangements within
the dislocation core and hence make direct comparisons with
MD results, we develop here a distinct method for the recon-
struction of atomic positions in a crystal that contains a dis-
location. The displacement field around a dislocation is
known to be accurate up to a distance of around 2b from the
dislocation. Since infinitesimal dislocations in our hybrid
method have very small Burgers vector, b /N, calculations of
atomic displacements within the core should be accurate up
to a distance of #2b /N from the center of each infinitesimal
dislocation !see Fig. 1". For example, if 20 infinitesimal dis-
locations were used to describe a dislocation core, atomic
displacements are accurate to within a distance of #b /10
from the center of each infinitesimal dislocation. The accu-
racy can be increased if we use more infinitesimal disloca-
tions. Ghoniem and Sun26 developed a fast-sum method to
calculate the elastic stress, strain and displacement of curved
dislocations numerically and accurately. The equation to cal-
culate displacements caused by dislocation loops is given by

ui =
1

4#
$
!=1

Nloop %− bi$ +
1
2 $

%=1

Ns

$
&=1

Qmax

w&

' &(iklblR,pp +
(kmnbnR,mij

1 − )
'x̂k,u( ,

where, Nloop is the number of dislocation loops, $ is the
solid angle, Ns is the number of segments in the dislocation
loop, Qmax, u, and w& are the number of integral points, the
normalized coordinate of the integral point, and the weight
function for the Gauss numerical integration, respectively. In
the construction of atomic arrangements based on elasticity,
an atomic volume is first prepared. Then, infinitesimal dislo-
cations are placed into the atomic volume. Equation !2" is
integrated to calculate the displacement field of the N infini-
tesimal dislocations at each atomic site, and all atoms are
displaced from their perfect-crystal sites by a vector given in
Eq. !2".

III. CORE STRUCTURE OF SELF-INTERSTITIAL
ATOM CLUSTERS

The arrangement of atoms participating in SIA clusters
has been revealed by a number of researchers, mainly using
the classical MD method. Osetsky et al.27 studied the core
structure and binding energies of self-interstitial loops in bcc
iron and fcc copper using two types of interatomic potentials
and discussed energetically stable configurations in different
orientations, and the dependence of the structure on the loop
size. Kuramoto et al.28 also evaluated the core structure of
self-interstitial loops in bcc iron with a Finnis-Sinclair inter-
atomic potential, studied energetically stable structures, and
proposed a mechanism for their motion. In this section, we
present results for the core structure of self-interstitial loops
in bcc iron and fcc copper using the ab initio continuum
hybrid method. We explore two main aspects here: the de-
pendence of the core structure on the loop size, and the in-
fluence of an externally applied stress on the SIA core. The
results of the present method will also be directly compared
to MD simulations.

A. Self-interstitial clusters in iron

In the studies of Osetsky et al., the most stable SIA clus-
ters in Fe were found to be sets of parallel )111* crowdions,
and that large clusters form perfect dislocation loops with
Burgers vector b= 1

2 )111*. Small clusters of )100* crowdions
were found to transform into a set of )111* crowdions on
annealing, while larger clusters !having more than nine
SIAs" were found to be stable and form perfect dislocation
loops with b= )100*. We consider here the self-interstitial
loop geometry shown in Fig. 2 as a representation of a clus-
ter of parallel )111* crowdions.27 The self-interstitial loop
has a hexahedral shape, and all straight segments in the loop
can glide on their own slip plane such as !1̄10", !1̄01", and
!01̄1". The Burgers vector of all segments is a0 /2+111,,
where a0 is the lattice constant of bcc iron !0.28665 nm". We
consider prismatic dislocation loops containing SIAs of 91,

FIG. 1. !Color online" Dislocation core region of !a" a perfect
dislocation and !b" each infinitesimal dislocation.
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397, and 919 to study the dependence on the size and con-
form with the hexagonal shape of the loop. The present study
is aimed at understanding the core structure of dislocation
loops and not the determination of their equilibrium shapes.
As such, the equilibrium shape of the loop on its habit plane
follows from independent MD calculations,27 and only the
out-of-plane deformation associated with its core structure is
analyzed. The in-plane shape of the loop may deviate from
its initial predetermined configuration and in highly aniso-
tropic materials may require the utilization of the full aniso-
tropic theory of elasticity. Such developments are outside the
scope of the present study and may warrant future efforts.

First, a benchmark computation was performed to deter-
mine the accuracy of the hybrid method to represent the core
structure of a straight edge dislocation in bcc iron with dif-
ferent numbers of infinitesimal dislocations !e.g., 5, 10, 15,
and 20". The results of the benchmark test indicate that more
than ten infinitesimal dislocations are needed to calculate the
core structure accurately. Thus, in all subsequent calculations
of the core structure of self-interstitial loops, we use 20 in-
finitesimal dislocations.

The GSF energy of iron along the Burgers vector direc-
tion of #111$ on a %110& glide plane is calculated by the ab
initio method so as to determine the lattice restoring stress in
Fe. The calculated dependence of the GSF energy on dis-
placement is shown in Fig. 3. To facilitate calculations of the
lattice restoring stress, the GSF energy, EGSF, is fitted to an
analytical equation of the form

EGSF = E0 + ' A

W(!/2)exp*− 2'u − uc

W )2+ ,

where, E0, A, W, and uc are the fitting parameters, having the
values of: −0.0110, 0.118, 1.26397, and 1.241, respectively.
Taking the derivative of EGSF with respect to u, the lattice
restoring stress can be evaluated and used in hybrid simula-
tions.

Figure 4 shows the results of the present method for the
core structure of self-interstitial loops in iron. In the figure,
infinitesimal dislocation arrays representing SIA clusters
containing 91, 397, and 919 SIAs are approximately self-
similar, and form very compact dislocation cores. Although
the results for the equilibrium positions of infinitesimal ar-

rays show the macroscopic shape and core structure of the
loops, the atomic arrangement around the core is also of
interest. To study the atomic arrangement within the core of
such SIA loops we performed classical MD simulations for a
loop containing 91 SIAs, using the interatomic potentials for
iron developed by Finnis and Sinclair29 and by Mendelev et
al.30 In MD simulations, we set up an atomic volume with a
size of 5.7"5.7"5.7 nm3. A hexahedral shape of !111" ex-
tra atomic plane with 91 atoms is placed at the center of the
atomic volume. Numerical quenching is performed to deter-
mine the stable configuration of the self-interstitial loop
when the potential energy of the atomic system converges to
a constant.

Figure 5 shows two-dimensional views of atomic arrange-
ments in the vicinity of the dislocation core of a 91-atom SIA
cluster. In the figure, atomic positions are shown on the
!112̄" plane, which intersects perpendicularly two straight
segments of the loop. It is clear that atomic arrangements
obtained by MD simulations are nearly identical, and that
they are the same as those obtained with the present method.
The dislocation loop core spreads only into a very narrow
region of about 6b, indicating that both interatomic poten-
tials give the same edge dislocation core structure. The
atomic arrangements indicate that the core of iron SIA clus-
ters calculated by the present method is also compact and is
very similar to the core structure obtained by the two inter-
atomic potentials. It is worth noting that the construction of
atomic arrangements from the results of the hybrid method is
shown to be very useful in detailed comparisons with MD
simulations.
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FIG. 2. Geometry of self-interstitial dislocation loops in iron

simulated by the hybrid method.
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FIG. 3. GSF energy of bcc iron along the !110" plane in the
,111- direction. The displacement u is normalized by the Burgers
vector magnitude, b.
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FIG. 4. Core structure of self-interstitial loops containing !a" 91,
!b" 397, and !c" 919 SIAs in iron. Each line represents one infini-
tesimal dislocation loop and is also considered as an equidisplace-
ment contour line incremented by b /20!.0.014 nm".
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The dependence of the core structure on the size of the
loop is shown in Fig. 6, where the displacement distributions
in the dislocation core of SIA loops are shown for various
sizes. For comparison, we also plot the results of hybrid
simulations for a straight edge dislocation. It can be observed
that the displacements are concentrated within a width of 6b,
and that the core structure !i.e., displacement distribution" is
identical in all loops. Moreover, the core structures of an SIA
loop in Fe is the same as that of a straight edge dislocation.
We also plot the displacement density in the dislocation core,
which is calculated by taking the derivative of the displace-
ment in the dislocation core with respect to the coordinate
along the Burgers vector direction, as shown in Fig. 7. The
figure shows that the displacement density in all SIA loops is
nearly size independent, and shows a very sharp peak at the
center of the dislocation core. The strong lattice restoring
forces here !gradients of the rising part of the GSF energy
curve in Fig. 3" result in a very compact dislocation core of
SIA loops in Fe regardless of their sizes !or self-energies".

B. Self-interstitial clusters in copper

Osetsky et al. performed MD simulations of SIA clusters
containing up to 127 interstitials and found that the most
stable configurations are rhombus pure edge loops
1
2 #110$%110& and hexagonal Frank loops 1

3 #111$%111&. Since
the possibility of dissociation into Shockley partial disloca-

tions exists for copper, we consider SIA loops of a rhombus
shape, with each segment on a slip plane, such as !111" and
!111̄", as shown in Fig. 8. The interatomic potentials devel-
oped by Ackland et al. and by Mishin et al. provide the
stacking fault energies of 36.0 and 44.4 mJ /m2, respectively.
Early measurements of the SF energy in copper are based on
a variety of techniques, with values showing considerable
variations.31 The value measured by Pande31 was reported as
94!30 mJ /m2 is less reliable, because it was obtained in-
directly by the extrapolation from measurements on Cu-Al
alloys.31 More direct measurements based on the dissociation

(a) (b) (c)

(112)

FIG. 5. Atomic arrangement of a 91-atom SIA loop on the !112̄"
plane in iron obtained by MD simulations with interatomic poten-
tials developed by !a" Finnis and Sinclair and !b" Mendelev et al.
Results of the present method are shown in !c". The colors are based
on the coordination number, where filled black circles have a coor-
dination number different from !8".

FIG. 6. !Color online" Displacement distribution of the self-
interstitial dislocation loop core in iron. The displacement distribu-
tion of a straight edge dislocation is also plotted.
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FIG. 8. Geometry of SIA cluster modeled as a rhombus-shaped
edge dislocation loop in copper simulated by the hybrid method. !a"
Burgers vector of the full prismatic loop; !b" stair-rod dislocations
with line sense; !c" leading Shockley partials with line sense; !d"
trailing Shockley partials; and !e" detail of infinitesimal stair rods in
between infinitesimal prismatic loops !note that b1=b2".
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of dislocations and imaging with a weak beam by Carter and
Ray32,33 gave values of 45 mJ /m2. The GSF energy evalu-
ated by the ab initio method is 46.4 mJ /m2, compared with
the experimentally measured value33 of 45 mJ /m2.

To deal with the extended core in copper, infinitesimal
dislocations representing each segment of the rhombus-
shaped loop are classified into two groups, each with differ-
ent Burgers vectors. The first group is for the leading partial
dislocation while the second is for the trailing partial dislo-
cation. Considering the combination of the slip plane and the
Burgers vector of partial dislocations, each segment of the
extended loop must have a different pair of Burgers vectors
for the two infinitesimal partial dislocations. The resulting
Burgers vectors for the segments are shown in Fig. 8. Fi-
nally, at the corners of each infinitesimal rhombus we ensure
that the net Burgers vector is zero by adding a stair-rod dis-
location. Figure 8 shows the Burgers vectors and line sense
vectors involved in modeling the SIA prismatic loop in cop-
per, wherein !a" the Burgers vector of the full prismatic loop
is shown, the stair-rod dislocation with line sense is illus-
trated in !b", the leading Shockley partials with line sense are
shown in !c", the trailing Shockley partials in !d", and finally
details of infinitesimal stair rods in between infinitesimal
prismatic loops are illustrated in !e". Note that for the leading
Shockley partial at the obtuse angle, the Burgers vectors are:
− a

6 #2̄11̄$ and a
6 #2̄11$, thus the stair-rod Burgers vector is

BSR= a
3 #001$. The stair-rod Burgers vector for the trailing

partial at the corresponding node on the trailing partial is the
same, but is written as a

3 #001̄$, because of the line sense
reversal at that node. In Fig. 8!e", we give an example of
only four infinitesimal SIA loops. In this example, the stair-
rod dislocation is divided into four segments, with Burgers
vectors determined from the displacement conservation at
each node, thus b1=ba−bA, b2=b1+ba−bA=2!ba−bA", b3
=b4+bB−bb=2!bB−bb", and b4=bB−bb. The corner nodes
joining each stair rod with two Shockley partials are allowed
to move in the calculations along the stair-rod directions. The
initial positions of infinitesimal prismatic loops !and hence
the length of each stair rod" is set at uniform intervals, and
the force balance equations are solved till equilibrium posi-
tions and shapes are obtained. The final dislocation segment
positions and shapes are not dependent on the initial posi-
tions because they satisfy force equilibrium !and hence mini-
mize the total energy of the system". To determine the de-
pendence of the core structure on the loop size, the core is
represented by 20 infinitesimal dislocations and the number
of SIAs in each loop is varied as: 16, 100, 400, and 1600.

The GSF energy for copper is calculated using the ab
initio method25 for the !111̄" plane along the #2̄11̄$ direction,
and the results are shown in Fig. 9. Similar to the case of
iron, the energy is fitted to a polynomial equation of the form

EGSF = E0 + A1u + A2u2 + A3u3 + A4u4 + A5u5 + A6u6, !3"

where, E0 and Ai!i=1,6" are the fitting parameters, given in
Table I. Note that in Eq. !3", u is the displacement normal-
ized by the magnitude of the Shockley partial dislocation
Burgers vector !a /%6". Only half the GSF energy function
along the A-! partial !1 /6#2̄11̄$" is fitted to the polynomial
function because the shape of the GSF energy is symmetric if
we were to continue fitting along the second partial !-B
!1 /6#1̄21$". The derivative of the GSF energy with respect to
u is then used to calculate the lattice restoring force.

Figure 10 shows the results of the present hybrid simula-
tions. It is noted that infinitesimal dislocation lines, in par-
ticular, at the top and bottom of the loop are twisted and
expanded for the small self-interstitial loop with 16 SIAs.
The concentration of infinitesimal dislocations cannot clearly
be seen in the figure, indicating that partial dislocations in
small self-interstitial loops have a flat core structure. On the
other hand, as the size of the self-interstitial loop increases,
the spatial distribution of infinitesimal dislocations acquires
two clearly isolated peaks, which delineate fully formed par-
tial dislocations.

Based on the results obtained from the present hybrid
model and the atomic configuration reconstruction method
described earlier, we will compare here the results of the
present model with MD simulations. We performed classical
MD simulations of the core structure of an SIA loop contain-
ing 100 SIAs with an interatomic potential for copper devel-
oped by Mishin et al.32 Similar to the case of iron, an atomic
volume with a size of 7.23"7.23"7.23 nm3 is constructed
for MD simulations and a rhombus shape of an extra &110'
atomic plane with 100 SIAs is inserted at the center. Numeri-
cal quenching is first performed to obtain an energetically

TABLE I. Values of the fitting parameters for the GSF energy of copper on the !111̄" plane along the
#2̄11̄$ direction to the six-order polynomial equation. The units of E0 and Ai are !eV /Å2".

E0 A1 A2 A3 A4 A5 A6

1.09504"10−5 −0.00416 0.16114 −0.24163 −0.02983 0.17648 −0.05913
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FIG. 9. GSF energy for copper on the !111̄" plane along the
#2̄11̄$ direction. The displacement is normalized by (bI(=a /%6,
which is the magnitude of Burgers vector of a Shockley partial
dislocation.
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stable structure of the self-interstitial loop. Figure 11 shows
the atomic arrangements of the core structure of a cluster
containing 100 SIAs in copper obtained by MD calculations
using the Mishin potential !a and b are compared with those
obtained by the present method c and d". The atomic posi-
tions shown in Fig. 11 are projected on the !111" plane in a
and c, and the !1̄10" plane in b and d. To show the core
structure clearly, atomic positions are analyzed using the
central symmetry technique. The results of the analysis are
shown in the figure, where gray atoms form the stacking
fault, and black atoms surround the partial dislocation core.
Comparing the atomic arrangements calculated by classical
MD with the results of the present hybrid method clearly
shows that the core structure of SIA dislocation loops in

copper obtained by the present method is indistinguishable
from those obtained with MD simulations. In fact, a com-
parison with Figs. 7 and 8 of Ref. 27, which are obtained by
MD simulations using the Ackland potential,34 shows that
the atomic structure obtained by Osetsky et al. is also nearly
identical to the present results. While the details of atomic
arrangements are determined by the dependence of the GSF
energy on atomic displacements on the slip plane, the mag-
nitude of the unstable stacking fault energy must be respon-
sible for the degree of dissociation within the core. One ad-
vantage of the present method is that the core structure of
large dislocation loops can be easily investigated without ad-
ditional computational difficulties. Moreover, the effects of
an applied local stress can also be easily included.

The dependence of the core structure on the size of the
SIA loop is then quantitatively studied. Figure 12 shows the
displacement distributions within SIA dislocation loop cores
in copper for a small cluster containing 16 SIAs, and for a
large cluster containing 1600 SIAs. The figure shows the
clear effect of size, where the core of the SIA dislocation
loop is more compact for small clusters. In all cases, the
displacement distribution is flat in the central part of the
dislocation loop core, which corresponds to a stacking fault
in the extended dislocation core. However, when the SIA
loop contains only 16 SIAs, the width of the central region is
very narrow, around 4b, indicating that the dislocation core
of small SIA loops is only slightly extended, and that the two
Shockley partials merge in the center. The width of the shelf,
which corresponds to the stacking fault region, becomes
larger as the number of SIAs in the loop increases. The de-
pendence of the width of the stacking fault on the size of the
self-interstitial loop is consistent with the classical MD re-
sults of Osetskey et al.27 Figure 13 shows the displacement
density within the dislocation core. The figure shows more
clearly the structure of the dislocation core such as the width
of the stacking fault and the position of Shockley partial
dislocations. There are two aspects related to this figure. The
first is the displacement density concentration within the par-
tial dislocation core and the second is the width of the stack-
ing fault between the partials. A sharp peak in the displace-
ment density means that partial dislocations are well formed.
The stacking fault width is the distance between the partials,
and hence the distance between the two peaks of the dis-

(a) (b)

FIG. 10. Core structure of an SIA cluster modeled as a rhombus-
shaped edge dislocation loop in copper containing !a" 16 and !b"
400 SIAs. Each line represents one infinitesimal dislocation loop
and is also considered as an equidisplacement contour line incre-
mented by b /20!#0.006 nm".
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FIG. 11. Atomic arrangements of the core structure of a cluster
containing 100 SIAs in copper obtained by MD calculations using
the Mishin potential !a and b", compared with those obtained by the
present method !c and d". The colors are based on the central sym-
metry technique; gray atoms form the SF, while black atoms sur-
round the partial dislocation core. The atomic positions are pro-
jected on the !111" plane !a and c" and the 1̄10 plane !b and d".
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in copper for a small cluster containing 16 SIAs and for a large
cluster containing 1600 SIAs.
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placement density. The displacement density peaks of the
small self-interstitial loop with 16 SIAs are not well sepa-
rated as compared to peaks observed in larger loops and the
separation between them is small, indicating that small SIA
loops have a narrow stacking fault region and a flat displace-
ment distribution within the core. As the number of atoms in
the SIA loop increases, the width of the stacking fault and
the two density peaks become larger, and approaches that of
the straight edge dislocation. Note that the SF ribbon width
for a straight edge dislocation is !14b, consistent with the
measurements of Carter and Ray.33 Thus, the current results
indicate that the core structure of self-interstitial loops in
copper has strong dependence on the size of the loop and that
loops with more than !400 SIAs have the same core struc-
ture as straight edge dislocations, as can be seen in Fig. 14

IV. SIA CLUSTER CORE RESPONSE
TO APPLIED SHEAR

Large local stresses, which may result from an externally
applied force or internally in the near vicinity of grown-in
dislocations, can influence the balance between the various
force components holding the SIA cluster together. To deter-
mine the effects of the local stress on the core structure, pure
shear stress is applied on the slip plane of the rhombus loop

edges along the "1̄1̄2# direction with a positive sense as
shown in the inset of Fig. 15. The figure also shows the
dependence of the stacking fault width on the number of
SIAs within the cluster for positive and negative applied
shear, and the unstressed case is also included for compari-
son. The edge component of the Burgers vector of the rhom-
bus loop edges has no reaction with the shear stress, while
the reaction of the screw component with the shear stress
results in the movement of the rhombus loop partials. If the
shear stress is positive, the leading and trailing partials move
away from one another, and the stacking fault between the
partials is widened. The opposite takes place for a negative
value of the shear stress. It is interesting to see that negative
shear renders the core more compact, and nearly independent
of size for sizes larger than approximately 400 SIAs. On the
other hand, large positive shear delocalizes the core of the
SIA cluster, and for a large-enough shear stress and a size
larger than !600 SIAs, the cluster core is totally delocalized.
The compressive state within the core becomes nonlocal and
of a long-range nature. These results highlight the need to
consider the influence of the local stress state on the atomic
structure, and hence on the elastic interactions between SIA
clusters and other defects.

V. SUMMARY AND CONCLUSIONS

The extended Peierls-Nabarro model that describes
atomic displacement distributions within a dislocation core
has been further developed to determine the core structure of
self-interstitial atom clusters in both iron $bcc% and copper
$fcc%. The distinct aspects of the present development include
ab initio determination of the resistance to slip on the slip
planes of dislocation loop segments comprising the SIA clus-
ter, representation of curved dislocation segments in complex
geometry, and the development of a method to reconstruct
atomic configurations for direct comparisons with MD simu-
lations. The use of infinitesimal dislocations to describe the
core structure in the hybrid method eliminates the singularity
of the dislocation core in the elasticity solution, enabling
determination of the atomic displacements around the dislo-
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FIG. 13. Displacement density distribution of SIA dislocation
loop cores in copper for a small cluster containing 16 SIAs and for
a large cluster containing 1600 SIAs.
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cation core on the basis of elasticity theory. Atomic arrange-
ments are reconstructed by elastically displacing atoms from
their equilibrium positions. These developments open the
door to studies of complex defect structures without recourse
and reliance on empirical interatomic potentials. In addition,
the simulation volume of the hybrid method can be substan-
tially larger than any corresponding MD simulation volume,
because the calculations are performed only for the defect
contents and not for all atoms, as is typical in MD simula-
tions. An additional advantage is that the local chemistry
effects on defects !such as afforded by the presence of im-
purities or gas atoms" can be incorporated once the influence
of the impurities on the slip resistance is determined from ab
initio calculations.

We summarize here the main physical results of the
present work on the core structure of SIA atom clusters in
iron and copper: !1" the core structure of self-interstitial
loops in iron is very compact and has no clear dependence on
the dislocation loop size. The core structure is nearly identi-
cal to that of a straight edge dislocation in iron. !2" Atomic
arrangements within the core of SIA clusters in iron are in
excellent agreement with classical MD simulations utilizing
the Ackland and Mendelev interatomic potentials. The agree-
ment is a consequence of the large unstable stacking fault
energy in iron, forcing core atoms to be in compact configu-
rations. !3" The core structure of self-interstitial loops in cop-
per is extended into a combination of a stacking fault and
Shockley partial dislocations. The core structure is shown to
have a strong dependence on the size of the loop. Small
self-interstitial loops have narrow stacking fault regions, on

the order of 4b, and their core displacement distribution is
flat, indicating that partials are not well formed and that they
merge in small clusters. On the other hand, as the size of the
self-interstitial loop increases, the width of the stacking fault
and the displacement density concentrated in partial disloca-
tions become larger. !4" The core structure of the self-
interstitial loops in copper with more than #400 SIAs is
almost the same as that of the straight edge dislocation. !5"
Atomic arrangements in copper calculated by the classical
MD method are dependent on the interatomic potential used.
Good agreement is obtained between the present hybrid
method and the MD calculations of Osetsky using the Ack-
land potential. !6" An applied external shear can delocalize
the core of an SIA cluster in copper, with positive shear
defined to be on the !111" plane along the $1̄1̄2% direction.
For an SIA cluster containing 1600 atoms, a positive 1 GPa
shear stress delocalizes the cluster and expands the SF to
30b, while a negative shear stress of 2 GPa contracts the core
to less than 5b, where b is the Burgers vector magnitude.
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